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Abstract 

This study examines the application of the Runge–Kutta Fourth Order (RK4) and Fifth Order (RK5) numerical 

methods in modelling dynamic electrical systems, focusing on series and parallel RLC circuits. Both approaches 

are widely recognized for solving ordinary differential equations (ODEs) with accuracy and efficiency, making 

them valuable when analytical solutions are difficult to obtain. The research compares the performance of RK4 

and RK5 in simulating transient and steady-state behaviours under different damping conditions, including 

underdamped, overdamped, and critically damped cases. Mathematica was used as the computational platform 

to evaluate each method in terms of accuracy, stability, and computational cost. Findings show that RK4 offers 

a practical balance between simplicity and performance, making it suitable for general circuit analysis. In 

contrast, RK5 demonstrates superior precision, especially in scenarios where high accuracy is essential. By 

applying both methods to different circuit configurations, the study provides a well-rounded understanding of 

their capabilities and limitations in real-world applications. Overall, the results highlight the trade-offs between 

RK4 and RK5, offering engineers, researchers, and students clearer guidance in selecting the most suitable 

method. Choosing the appropriate approach enhances both the accuracy and efficiency of electrical circuit 

modelling. 
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Introduction 

Numerical methods play a vital role in solving ordinary differential equations (ODEs), particularly 

when obtaining exact analytical solutions is challenging or impractical. In electrical engineering, these 

techniques are essential for analyzing the time-dependent behavior of circuits, especially during 

sudden changes or transient events. While Euler’s method, one of the earliest approaches to solving 

differential equations, remains a foundation for modern numerical techniques (Euler, 1768; Burden 

& Faires, 2011; Sauer, 2018). It often lacks the accuracy required for complex or high-precision 

systems (Chen et al., 2024). 

Runge–Kutta methods, particularly the fourth-order (RK4) and fifth-order (RK5) variants, 

provide significantly improved accuracy and stability. By estimating slopes at multiple points within 

each time step, these methods are well-suited for studying real-time circuit responses (Ashgi et al., 

2021; Ezhilarasi, 2023). The several current studies apply RK4 and RK5 to compare booth method in 
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RLC circuits (Godswill et al. (2025) and also implementing Runge-Kutta RK4 vs RK5 in RLC 

Transient Responses (Kafle et al. (2021). Although both methods are widely used, detailed 

comparative studies remain limited. Using Mathematica as the computational platform, this research 

evaluates the accuracy and efficiency of each method, aiming to offer practical guidance for engineers 

in selecting the most appropriate approach—particularly for nonlinear circuits or systems with rapidly 

changing signals (Shaikh et al., 2022; Ying et al., 2023). 

 

Methodology 

Equation (1) is the formula of the Runge-Kutta fourth-order method given by (Shaikh et al., 2022b) 

as below: 

𝑦" = 𝑓(𝑥, 𝑦)                                                                                                    (1) 

𝑦(𝑥0) = 𝑦0 and 𝑦′(𝑥0) = 𝑦′
0
 

𝑦𝑖+1 = 𝑦𝑖 +
1

6
(𝑅1+ 2(𝑅2+ 𝑅3) +𝑅4) + 𝑂(ℎ5) 

 

where, 

𝑅1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛) 

𝑅2 = ℎ𝑓 (𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑅1) 

𝑅3 = ℎ𝑓 (𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑅2) 

𝑅4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 +𝑅3) 

 

h represents the step size and 𝒚𝒊 are the values of the dependent variables at the current step. R1, 

R3, and R4 are intermediate calculations based on the derivative function.  

There exist several RK5 formulations, like equation (2), each suited for different applications. 

Some are given by the RK5 formula (Kafle et al., 2021).  
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𝑦𝑖+1 = 𝑦𝑖 +
ℎ

90
(7𝑘1 +32𝑘3 + 32𝑘5 + 7𝑘6)                (2) 

where, 

𝑡𝑛+1 = 𝑡𝑛 +ℎ 

𝑘1 = ℎ𝑓(𝑡𝑛, 𝑦𝑛) 

𝑘2 = 𝑓(𝑡𝑛 +
ℎ

4
, 𝑦𝑛 +

ℎ

4
𝑘1) 

𝑘3 = 𝑓(𝑡𝑛 +
ℎ

4
, 𝑦𝑛 +

ℎ

8
𝑘1 +

ℎ

8
𝑘2) 

𝑘4 = 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2 +ℎ𝑘3) 

𝑘5 = 𝑓(𝑡𝑛 +
3ℎ

4
, 𝑦𝑛 +

3ℎ

16
𝑘1 +

9ℎ

16
𝑘4) 

𝑘6 = 𝑓(𝑡𝑛 +ℎ, 𝑦𝑛 −
3ℎ

7
𝑘1 +

2ℎ

7
𝑘2 +

12ℎ

7
𝑘3 −

12ℎ

7
𝑘4 +

8ℎ

7
𝑘5) 

 

  Also, the RK5 formula constructed by Kazeem Iyanda et al. (2021) as equation (3): 

𝑌𝑖+1 = 𝑌𝑖 +
1

192
(23𝑘1 + 125𝑘3 − 81𝑘5 + 125𝑘6)               (3) 

where, 

𝑘1 = ℎ𝑓(𝑡𝑖 , 𝑌𝑖) 

𝑘2 = 𝑓(𝑡𝑖 +
ℎ

3
,𝑌𝑖 +

𝑘1
3
) 

𝑘3 = 𝑓(𝑡𝑖 +
2ℎ

5
, 𝑌𝑖 +

1

25
(4𝑘1 +6𝑘2)) 

𝑘4 = 𝑓(𝑡𝑖 + ℎ,𝑌𝑖 +
1

4
(𝑘1 −12𝑘2 + 15𝑘3)) 
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𝑘5 = 𝑓(𝑡𝑖 +
2ℎ

3
, 𝑌𝑖 +

1

81
(6𝑘1 +90𝑘2 − 50𝑘3 + 8𝑘4)) 

𝑘6 = 𝑓(𝑡𝑖 +
4ℎ

5
, 𝑌𝑖 +

1

75
(6𝑘1 +36𝑘2 + 10𝑘3 + 8𝑘4)) 

 

h is the step size, 𝒙𝒏 are the values of the independent variables and 𝒚𝒏 are the values of the 

dependent variables. k1, k3, k4, k5, and k6 are intermediate calculations based on the derivative 

function. This requires the use of numerical techniques to solve the governing differential 

equations of the circuit. Parameters for the circuit are given as resistance (R), inductance (L), and 

capacitance (C). 

Classification of circuit response: 

 

The damping factor (𝜉)using equation (4): 

ξ =
𝑅

2
√

𝐶

𝐿
                    (4)

 

Classify the system's response based on the damping force: 

 

𝜉 > 1 ∶ Overdamped 

 

𝜉 = 1 ∶Critically damped 

 

𝜉 < 1: Underdamped 

 

This classification is crucial as it determines the nature of the transient response, ranging 

from convergence to steady state in overdamped systems to oscillatory behaviour in systems
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Absolute error is calculated using the formula in equation (5) from (Shaikh et 

al., 2022): 

 

|𝑽𝑨 − 𝑽𝑬|                                        (5) 

 

𝑽𝑨 = 12 − [12 cos(8660.25𝑡) + 6.39 sin(8660.25𝑡)]𝑒-SOOOt 

 

Results and Discussion 

Figure 1 displays the voltage-time response of a series RLC circuit under underdamped 

conditions. The graph shows that the voltage oscillates with decreasing amplitude over time, 

which is typical of an underdamped system. Both the RK4 and RK5 methods in this study 

successfully capture this oscillatory behaviour.  

 

 

Figure 1: Voltage-Time Response of the Underdamped RLC Series Circuit 
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Table 1 shows the absolute error analysis for the underdamped RLC parallel circuit 

over a short simulation period from t=0.0000 to t=0.0012 seconds. The exact solution is 

compared against the RK4 and RK5 numerical methods at each time step to evaluate their 

accuracy. 

 

 
t 

 
Exact Solution 

 Abs Error  

  RK4  RK5 

0.0000 0 0  0 

0.0001 4.0828 0.44349  0.1447 

0.0002 10.1925 1.03632  1.0215 

0.0003 13.4920 0.0869  0.9744 

0.0004 13.8375 0.0952  0.1951 

0.0005 12.8952 0.0401  0.4289 

0.0006 12.0276 0.0153  0.4899 

0.0007 11.6923 0.0350  0.1972 

0.0008 11.7481 0.0240  0.0778 

0.0009 11.9152 0.00452  0.01588 

0.0010 12.0260 0.00718  0.0934 

0.0011 12.0517 0.00829  0.0033 

0.0012 12.0310 0.00387  0.0389 

 

Table 1:  Error Analysis of RK4 and RK5 of RLC Series Circuit (Case I: Underdamped) 

 

Figure 2 illustrates a visual comparison, which plots the voltage response of Euler, RK3, 

BRK5, RK4, and RK5 against time. The graph clearly shows that the RK5 curve remains closer 

to the reference (BRK5) throughout, indicating higher fidelity and better error control.  
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Figure 2: Voltage-Time Response of the Underdamped RLC Parallel Circuit. 

 

Table 2 presents the absolute error analysis for the RLC parallel circuit under 

underdamped conditions (Case II). The errors were calculated by comparing the RK4 and 

RK5 results with the exact analytical solution over the time interval t=0 to t=1.0 seconds.  

 

 
t 

 
Exact Solution 

 Abs Error  

  RK4  RK5 

0.0 0 0  0 

0.1 0.73755 0.44349  0.34137 

0.2 2.18195 1.03632  0.81197 

0.3 4.15289 1.65848  1.30695 

0.4 6.48369 2.21999  1.75112 

0.5 9.02491 2.66072  2.09789 

0.6 11.64659 2.94854  2.32655 

0.7 14.23940 3.07625  2.43851 

0.8 16.71490 3.05767  2.45295 

0.9 19.00490 2.92302  2.40189 

1.0 21.06029 2.71405  2.32534 
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Table 2 Absolute Error Analysis of RK4 and RK5 of RLC Parallel Circuit (Case II: 
Underdamped). 

 

Conclusion 

This study successfully applied and evaluated the Runge–Kutta Fourth Order (RK4) and Fifth 

Order (RK5) methods in solving differential equations that model the dynamic behavior of 

electrical circuits, with a focus on RLC configurations. Through simulations  of transient and 

steady-state responses under underdamped, critically damped, and overdamped conditions, the 

results confirmed that both RK4 and RK5 are reliable and effective tools for circuit analysis.  

RK4 emerged as a computationally efficient method, delivering accurate results with 

lower complexity—making it particularly suitable for real-time simulations and simpler circuit 

models. In contrast, RK5 consistently provided higher accuracy, proving advantageous in 

scenarios with rapid transients, stringent precision requirements, or nonlinear system dynamics. 

Despite its higher computational cost, RK5 demonstrated the ability to minimize absolute error 

over extended time intervals. 

Overall, the findings highlight that RK4 is well -suited for fast, less resource-intensive 

applications, while RK5 is the method of choice for high-accuracy modeling of complex or 

sensitive electrical systems. This comparative insight can guide engineers an d researchers in 

selecting the most appropriate approach based on the trade-off between computational efficiency 

and precision. 
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