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ABSTRACT

This paper focuses on solving the one-dimensional heat equation numerically through the Finite Difference
Method (FDM), highlighting the application of the Crank-Nicolson approach. The heat equation, a key partial
differential equation in physics and engineering, describes how heat diffuses over time within a material. Although
exact analytical solutions exist for simple scenarios, they are often inadequate for more complex problems, making
numerical techniques essential. In this study, the continuous domain is discretized in both time and space,
converting the heat equation into a set of algebraic expressions. The Crank-Nicolson method, well-regarded for
its numerical stability and second-order precision, is applied to examine temperature variations under different
types of boundary conditions, such as Dirichlet and Neumann. Implementation is carried out using Wolfram
Mathematica, which also enables dynamic visualizations through animated plots and 3D surfaces. The accuracy
of the numerical results is checked by comparing them to known exact solutions, using measures like the L>-Norm
and maximum absolute error. The analysis demonstrates that the Crank-Nicolson method is an effective and
accurate tool for simulating heat transfer, offering a reliable solution strategy for practical thermal conduction
problems.

Keywords: Heat equation, Finite Difference Method, Crank-Nicolson Method, Numerical Solution, Error
Analysis

Introduction
The heat equation is a fundamental partial differential equation that models the diffusion of thermal
energy through a medium over time. Its applications span across various scientific and engineering
domains, including thermal analysis in mechanical systems, environmental simulations, and materials
science. Although analytical solutions exist for idealized cases with simple boundary conditions and
uniform materials, real-world problems often involve complexities such as irregular geometries, non-
homogeneous materials, and mixed or time-dependent boundary conditions that make exact solutions
infeasible. In such cases, numerical methods provide an effective alternative. Among these, the Finite
Difference Method (FDM) is one of the most widely used techniques for approximating the solution of
partial differential equations. By discretizing both space and time, FDM transforms the continuous heat
equation into a solvable system of algebraic equations.

This study focuses on the Crank-Nicolson scheme, an implicit finite difference approach known

for its second order accuracy and unconditional stability. It is particularly effective in handling transient
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heat conduction problems and supports a wide range of boundary conditions, including Dirichlet and
Neumann types. To investigate the performance of this method, the one-dimensional heat equation was
solved using Wolfram Mathematica under different boundary conditions. The numerical results were

then validated against analytical solutions using error metrics such as the L, —Norm and maximum

absolute error. The findings confirmed the method's high accuracy and robustness, with minimal
deviation from the exact solutions. This research demonstrates the Crank-Nicolson method's
adaptability and efficiency, offering a reliable computational tool for solving practical heat transfer
problems. While the study is limited to one-dimensional cases and fixed boundary conditions, it lays
the groundwork for future research in higher dimensions, variable boundaries, and more complex

thermal systems

Literature Review

Numerical methods are always employed to resolve the heat equation when analytical solutions are
impossible due to complex geometries, time-varying boundary conditions, or inhomogeneous material
properties. One of the most well-known and effective is the Finite Difference Method (FDM), which
converts the differential equations into algebraic systems by discretizing space and time (Song et al.,
2018). For homogeneous equations, FDM yields exact results, especially for steady-state heat
conduction problems with uniform materials like copper and aluminium (Loskor & Sarkar, 2022). For
non-homogeneous equations with internal heat sources or non-uniform thermal properties, more
advanced extensions of FDM such as the Crank-Nicolson method demonstrate improved accuracy and
stability (Safari, 2024).

The Crank-Nicolson scheme, which was presented by Crank and Nicolson in 1947, is an
implicit technique that provides a trade-off between second order accuracy in time and space and
numerical stability (Liu & Hao, 2022). Besides that, the Crank-Nicolson scheme is particularly suitable
for transient problems and, due to its trapezoidal time-stepping, is ideal for simulations with fine spatial
meshes or long times (Mohebbi & Dehghan, 2010). The boundary conditions are also crucial for
effective heat transfer modelling. Studies have shown its effectiveness in both homogeneous and non-
homogeneous heat equations, as well as its adaptability to boundary conditions such as Dirichlet and
Neumann types (Mojumder et al., 2023). Dirichlet conditions yield prescribed temperatures, and
Neumann conditions yield a constant heat flux. Both conditions have been utilized effectively in FDM
simulations (Hajrulla et al., 2024). The Crank-Nicolson scheme has also been noted to be extremely
stable when used under mixed boundary conditions or on non-regular domains (Chai et al., 2020).
Besides, optimization techniques such as adaptive mesh refinement, hybrid schemes, and iterative
solvers such as the Gauss-Seidel or Conjugate Gradient methods have been employed to ensure

computational efficiency (Tafrikan & Ghani, 2022). Computational software such as Wolfram
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Mathematica also enables the use of FDM via symbolic computation and advanced visualization
(Narahari et al., 2013). The literature as a whole show that FDM, especially the Crank-Nicolson
variation, is a strong, accurate, and flexible way to represent one-dimensional heat transfer problems in

many different situations.

Methodology
The process of solving the one-dimensional heat equation in this study begins with the selection of the

equation, expressed as

ar _ o°T

a

where T = temperature, t = time, x = spatial coordinates, and a = thermal diffusivity constant.

(1

The equation is then solved using the Finite Difference Method (FDM), a numerical approach that
discretizes the continuous problem. To enhance accuracy and ensure stability, the Crank-Nicolson
method which is a semi-implicit scheme, is used for time discretization. After that, the heat equation is
used on a one-dimensional model, which is solved using the discretized scheme. Numerical results are
then generated, and visual representations such as surface and line plots are produced using Wolfram
Mathematica to illustrate the temperature distribution over time. Finally, the accuracy of the numerical

solution is evaluated through error analysis, including the L, — Norm and maximum absolute error, and

comparing the results with the exact analytical solution to validate the effectiveness of the Crank-

Nicolson method.

Result and Discussion

This model problem examines the temperature distribution along a one-dimensional rod subjected to
mixed boundary conditions, where one end is Dirichlet and the other is Neumann. Using Wolfram
Mathematica and the Crank-Nicolson finite difference scheme, the simulation visualizes heat transfer
through surface plots and animations. The domain considered is 0<x <10, t >0 and the numerical
solution is compared with the analytical solution. The analysis evaluates the effect of spatial and

temporal step sizes on accuracy and stability, using error metrics such as absolute error, L, —Norm,

and maximum norm. The findings show that even with mixed boundary conditions, the Crank-Nicolson
approach yields reliable and accurate approximations.
The heat equation, along with its initial and boundary conditions for model problem is
formulated as:
u, =a’u, for 0<x<10,t>0 2)

Initial condition
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u(x,0)= 3sin(5—xj )
2
Boundary condition
Dirichlet: u(0,t)=0 “4)
Neumann: u, (10,t)=0 )

The simulation was implemented in Wolfram Mathematica over a domain of length L =10 and

run until T =1.0. The spatial and temporal grids were discretized into 200 steps each, resulting in

ot
dx =0.05and dt=0.005. A key dimensionless parameter 1 = ¢ y was used to form the tridiagonal

matrix in the Crank-Nicolson scheme. These discretization choices provided a fine resolution for

capturing heat transfer dynamics efficiently and accurately, particularly near the boundaries.

Heat Cond_uction (Crank-Nicolson) Exact Sglulion Heat Conduction
e < '// [

Figure 1: 3D-plot of Crank-Nicolson Solution and the Exact Solution

The temperature changes over time and along the rod are clearly illustrated through surface and
line plots. Figure 1 above show that the Crank-Nicolson method produces results that closely match the
exact solution, highlighting its accuracy. The 3D plots reveal smooth and consistent heat flow, and the
visible symmetry and wave patterns further support the method’s reliability in solving heat transfer

problems effectively.

Table 1: Comparison of Exact Solution and Crank-Nicolson Solution with Error

X Exact Solution FDM (Ucn) Absolute Error
0 0.0000000 0 0.0000000
1 0.0034660 0.0034925 0.0000265
2 -0.0055535 -0.0055960 0.0000425
3 0.0054323 0.0054741 0.0000418
4 -0.0031506 -0.0031691 0.0000185
5 -0.0003841 -0.0002969 0.0000872
6 0.0037661 0.0046497 0.0008836
7 -0.0037661 -0.0010337 0.0046165
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8 0.0052872 0.0190347 0.0137475
9 -0.0028214 0.0152562 0.0180776
10 -0.0007665 0.0005732 0.0013397
L, — Norm - - 0.1042487
L, - Norm - - 0.0186432

Table 1 shows a comparison between the exact analytical solution and the numerical results
from the Crank-Nicolson method for the one-dimensional heat equation with mixed boundary
conditions. The table shows the temperature at different points along the rod at a certain period. Overall,
the numerical solution closely matches the exact values, particularly near the center of the domain.
Small differences begin to appear near the edges, peaking at x =9 where the maximum deviation is

recorded. The method was verified to be accurate with the L, — Norm and the maximum absolute error,

which were 0.1042 and 0.0186 respectively. These relatively low error values indicate that the
numerical scheme is both accurate and stable throughout the simulation. The smooth progression of
temperature over time also reflects the Crank-Nicolson method’s strong stability and second-order
accuracy. In summary, the method effectively replicates heat transfer under the boundary conditions
imposed, with minimal errors near the boundaries due to boundary behavior. The use of small spatial

grid size and an appropriate time step assisted in enhancing the precision of the results.

Conclusion
This study reports that the Crank-Nicolson finite difference scheme we found to be a stable and accurate
tool for the solution of the one-dimensional heat equation under mixed Dirichlet and Neumann

boundary conditions. Low L, —Norm and maximum absolute error values verified that the simulation

findings, which were implemented and visualized using Wolfram Mathematica, closely matched
analytical answers. Although there were slight variations in the area of the Neumann boundary, the
overall accuracy was within acceptable limits. These results confirm that the Crank-Nicolson method's
reliability as a useful instrument for real-world thermal analysis, especially when boundary conditions
are irregular. Kubacka and Ostrowski (2021) demonstrated that the Crank-Nicolson method is stable
and accurate even when they are applied in Robin-type boundary condition. The method may be
extended to two- or three-dimensional systems in future research, or adaptive time-stepping may be

investigated.
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