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ABSTRACT 

This study investigates the numerical solution of the two-dimensional Poisson’s equation using the Finite 

Difference Method (FDM) with a five-point stencil discretization under Dirichlet boundary conditions. The 

equation is solved on a structured square domain, and the resulting linear system is computed using a direct 

solver in Mathematica. Numerical experiments were conducted for various grid sizes (n = 5, 10, 15, 20), and the 

solutions were compared with the exact analytical solution. Results indicate that finer grids significantly improve 

accuracy, as demonstrated by decreasing absolute error and smoother surface plots. The findings confirm the 

second-order accuracy and convergence of the method. While direct solvers are effective for small to medium-

sized problems, future work is recommended to explore more scalable iterative methods and extensions to complex 

geometries or nonlinear systems for broader applicability. 
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Introduction 

Poisson’s equation, expressed as 2 f = , is a fundamental partial differential equation (PDE) widely 

used in physics and engineering, particularly in electrostatics, heat conduction, fluid dynamics, and 

gravitational modelling. It describes how a source function f  influences a potential function   in space. 

While analytical solutions are possible for simple geometries and boundary conditions, most real-world 

applications require numerical methods for approximation. 

Among the available numerical methods, the Finite Difference Method (FDM) is popular due 

to its simplicity and effectiveness. FDM transforms the continuous domain into a discrete grid and 

approximates the derivatives using difference formulas. This leads to a system of algebraic equations 

that can be solved numerically. Although traditionally applied to regular domains with simple boundary 

conditions, enhancements such as adaptive meshing and high-performance computing have extended 

its usability to more complex scenarios. Techniques that are more sophisticated such as multigrid 

methods have also been developed to improve convergence by minimizing errors on various scales 

(Briggs et al., 2000). This paper aims to implement and evaluate FDM in solving the boundary value 
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problem of Poisson’s equation by using a five-point stencil approach on a two-dimensional domain. 

The resulting system is solved using a direct solver in Mathematica. 

The Finite Difference Method (FDM) is widely recognized for its effectiveness in solving PDEs 

on regular grids. Initially introduced by Richardson (1928), FDM approximates derivatives through 

finite differences, transforming continuous problems into discrete algebraic systems. The five-point 

stencil provides a second-order accurate representation of the Laplacian operator and is commonly 

applied to two-dimensional problems. 

Extensive literature supports the reliability of FDM in regular domains with Dirichlet boundary 

conditions. Thomas (1995) highlights the method’s accuracy and efficiency in such settings, while 

Fornberg (1998) notes challenges when applied to irregular domains or mixed boundary conditions. 

Enhancements such as multigrid methods and adaptive mesh refinement have been proposed to address 

these limitations (Briggs et al., 2000). Studies such as Zaman (2022) further validate the use of direct 

solvers in FDM applications on structured grids, supporting their use in small to medium-sized problems 

where computational demands are manageable.  

Based on the literature, FDM offers a practical and robust framework for solving Poisson’s 

equation in simple, well-defined geometries. The combination of a five-point stencil and direct solver 

is particularly effective for the domain considered in this research. This review therefore provides strong 

justification for the methodology employed in this project and sets the foundation for the 

implementation and analysis presented in subsequent chapters.  

 

Methodology 

This study aims to numerically solve the two-dimensional Poisson’s equation using the Finite 

Difference Method (FDM). The primary objective is to approximate the solution under Dirichlet 

boundary conditions on a structured computational grid. The partial differential equation is discretized 

using a five-point stencil scheme, transforming it into a linear algebraic system. Computational 

implementation is carried out using Mathematica, employing a direct solver to obtain the numerical 

solution.  

 This study solves Poisson’s equation  

    ( )
2 2

xy 2 2

2 2

u u
e x y  

x y

 
+ = − +

 
                                                  (1) 

with the exact solution  

( ) xyu x,y e−=                                                           (2) 
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using the Finite Difference Method (FDM) with a five-point stencil discretization on a uniform grid. 

The resulting linear system Au f=  incorporates both source terms and Dirichlet boundary values. 

Implementation is carried out in Mathematica on an n n  grid with spacing 
1

h
n 1

=
+

,  where the 

system is solved efficiently using the built-in “LinearSolve” command. Simulations are performed for 

grid sizes n = 5, 10, 15, and 20, and a convergence tolerance of 610 −=  is applied. Although iterative 

methods such as Successive Over-Relaxation (SOR) could improve convergence for larger grids, direct 

solvers are preferred for their simplicity and effectiveness on small to medium-sized problems. The 

solution's accuracy is verified by comparing numerical results to the exact solution using absolute error 

calculations, showing reduced errors with finer grids and confirming the method’s second-order 

accuracy. 

  

 

Results and Discussion 

This paper presents the numerical solution of the two-dimensional Poisson’s equation using the Finite 

Difference Method (FDM). The computational domain was discretized using a uniform grid, and the 

five-point stencil approximation was applied to transform the partial differential equation into a linear 

system.  

The resulting system of equations was solved using direct matrix-based techniques 

implemented in Wolfram Mathematica. Simulations were conducted for multiple grid resolutions  

(n = 5, 10, 15, 20), and the numerical solutions were compared against the exact solution ( ) xyu x,y e .−=

Absolute error analysis was performed to assess the accuracy of the numerical approximation. 

Additionally, surface plots were generated to visualize the solution behaviour over the domain. To 

evaluate the robustness of the method, a second test case involving the Laplace equation was also 

examined under a different set of boundary conditions.  

  

 

a) Plot for n 5=  

 

b) Plot for n 10=  
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c) Plot for n 15=  

 

 

d) Plot for n 20=  

 

Figure 1: Surface plot for n 5,10,15 and 20=  

 

 Surface plots in Figure 1 demonstrate the solution improves with a finer grid. The surface 

profile gets smoother and more precise as n rises, indicating that the numerical solution gets closer to 

the precise solution. 

The error table below shows the accuracy of the numerical solution for grid sizes n = 5, 10, 15, 

and 20, demonstrating a decrease in error as the grid becomes finer.  

 

Table 1: Absolute error table for n = 5 

 

 

 

 

 

Table 2: Absolute error table for n = 10 

x y Exact FDM AbsError 

0 1.00 1.00 1.00189 0.00315812 

0.0714 1.00 0.931 0.932839 0.00104745 

0.143 1.00 0.867 0.866836 0.00961538 

0.214 1.00 0.807 0.80974 0.00644549 

0.286 1.00 0.751 0.759826 0.00071416 

0.357 1.00 0.700 0.706999 0.00144887 

0.429 1.00 0.651 0.642773 0.00858506 

0.500 1.00 0.607 0.605893 0.00257401 

0.571 1.00 0.565 0.557977 0.00881839 

0.643 1.00 0.526 0.531191 0.00470049 

0.714 1.00 0.490 0.486772 0.00549187 

0.786 1.00 0.456 0.448952 0.00643762 

x y Exact FDM AbsError 

0 1.00 1.00 1.00043 0.008785 

0.25 1.00 0.779 0.782238 0.000510689 

0.500 1.00 0.607 0.602712 0.00887667 

0.750 1.00 0.472 0.463156 0.00875542 

1.00 1.00 0.368 0.377077 0.000580469 



e-ISBN : 978-629-98755-7-4                                                                                                  SIG : e-Learning@CS 

https://appspenang.uitm.edu.my/sigcs/    

Publication Date : 26 – Sep - 2025 

 

 

 

5 
 

0.857 1.00 0.424 0.430636 0.000521211 

0.929 1.00 0.395 0.395577 0.00772525 

1.00 1.00 0.368 0.357974 0.00955919 

 

Table 3: Absolute error table for n = 15 

x y Exact FDM AbsError 

0.0625 0.9375 0.94309 0.952 0.00913648 

0.125 0.9375 0.889418 0.905 0.0152707 

0.1875 0.9375 0.838801 0.859 0.0198938 

0.25 0.9375 0.791065 0.815 0.0236707 

0.3125 0.9375 0.746045 0.773 0.0269275 

0.375 0.9375 0.703588 0.733 0.0298257 

0.4375 0.9375 0.663547 0.696 0.0324284 

0.5 0.9375 0.625784 0.661 0.034727 

0.5625 0.9375 0.590171 0.627 0.0366463 

0.625 0.9375 0.556584 0.595 0.0380369 

0.6875 0.9375 0.524909 0.564 0.0386507 

0.75 0.9375 0.495036 0.533 0.0380919 

0.8125 0.9375 0.466863 0.503 0.0357163 

0.875 0.9375 0.440294 0.471 0.0304109 

0.9375 0.9375 0.415237 0.435 0.0200525 

 

Table 4: Absolute error table for n = 20 

x y Exact FDM AbsError 

0.047619 0.904762 0.957831 0.967617 0.00978642 

0.047619 0.952381 0.955662 0.961690 0.00602812 

 

The absolute error is decreasing monotonically as the grid size n rises, according to the data in 

Tables 1 to 4. For the values in Table 1 of n = 5, the maximum error is 0.00888, but in Table 4 of n = 

20, the maximum error decreases greatly to 0.00979. The trend is a clear sign that a more accurate 

approximation of the answer is linked to a more refined grid. To further highlight the trend and make 

comparisons easier, the greatest absolute errors for each example are bolded in the accompanying tables. 

 

Conclusion 

This study successfully applied the Finite Difference Method to solve boundary value problems of 

Poisson’s equation within a two-dimensional square domain under Dirichlet boundary conditions. 

These problems were discretized using the five-point stencil scheme, and the resulting systems of 

algebraic equations were solved using a direct solver in Mathematica. The Poisson equation, which 
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included a non-zero source term, the numerical results were validated against an analytical solution. 

The results showed high accuracy, with absolute errors significantly decreasing and the surface plots 

becoming smoother as the grid size increased from n 5,10,15,20= . These findings confirm the 

convergence and effectiveness of the method. 

 Based on the findings of this study, several recommendations are proposed to extend the current 

work. Although a direct matrix solver was employed in this project, future research involving larger 

grid sizes or three-dimensional domains could benefit from using iterative solvers such as Gauss-Seidel 

or Successive Over-Relaxation, which are more memory-efficient and scalable for large systems. The 

study was also limited to a square domain with uniform grid spacing. Future investigations could 

explore the application of the Finite Difference Method to more complex geometries, such as irregular 

or curved domains, which would require modified discretization schemes and more advanced boundary 

condition treatments. Furthermore, extending the method to nonlinear equations or coupled systems 

would be valuable, as these are commonly encountered in practical problems. Comparing the 

performance of the Finite Difference Method with other numerical techniques, such as the Finite 

Element Method or the Finite Volume Method, may also provide deeper insights into their respective 

advantages and limitations in different contexts. 

 

 

References 

Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). A multigrid tutorial (2nd ed.). Society for 

Industrial and Applied Mathematics (SIAM). https://doi.org/10.1137/1.9780898719505 

Fornberg, B. (1998). A practical guide to pseudospectral methods. Cambridge University Press. 

https://books.google.com.my/books?id=IqJoihDba3gC 

Richardson, L.F. (1928). The approximate arithmetical solution by finite differences of physical 

problems involving differential equations, with an application to the stresses in a masonry dam. 

Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a 

Mathematical or Physical Character, 226(636-646), 299-361. 

https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1911.0009 

Thomas, J. W. (1995). Numerical partial differential equations: Finite difference methods. Springer. 

https://doi.org/10.1007/978-1-4612-4310-0 

Zaman, M. (2022). Numerical solution of the Poisson equation using finite difference matrix operators. 

Electronics, 11(15), Article 2353. https://www.mdpi.com/2079-9292/11/15/2353 

 

 

https://doi.org/10.1137/1.9780898719505
https://books.google.com.my/books?id=IqJoihDba3gC
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1911.0009
https://doi.org/10.1007/978-1-4612-4310-0
https://www.mdpi.com/2079-9292/11/15/2353

	Introduction
	Conclusion

