
e-ISBN : 978-629-98755-5-0 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 24 – Mac - 2025

1

THE IMPACT OF AI TOOLS ON SOFTWARE DEVELOPMENT

PRACTICES AND PROGRAMMER PRODUCTIVITY

*Elly Johana binti Johan1, Syarifah Adilah binti Mohamed Yusoff2, Wan Anisha binti Wan
Mohammad3 and Azlina binti Mohd Mydin4

*ellyjohana@uitm.edu.my1, syarifah.adilah@uitm.edu.my2, wanan122@uitm.edu.my3,

azlin143@uitm.edu.my4

1,2,3Jabatan Sains Komputer & Matematik (JSKM),

Universiti Teknologi MARA Cawangan Pulau Pinang, Malaysia

*Corresponding author

ABSTRACT

The integration of Artificial Intelligence (AI) tools into software development has revolutionized traditional

programming practices, significantly enhancing programmer productivity. This article explores the

transformative impact of AI tools across various dimensions of software development, including code completion,

bug detection and fixing, code refactoring, learning and adapting, automated testing, and natural language

processing (NLP). AI-powered code completion tools like GitHub Copilot and PCR-Chain streamline coding by

predicting and correcting code snippets, while bug detection systems like EBUG improve error resolution

processes. Refactoring tools enhance software quality by automating repetitive tasks and providing optimization

insights. AI's adaptive capabilities allow tools to learn user preferences, improving suggestion accuracy and

usability. Additionally, automated testing frameworks leverage AI to optimize and expedite testing workflows,

ensuring software reliability. The advancements in NLP have further enabled natural language-guided

programming and documentation generation. Despite these advancements, challenges such as ethical concerns,

reduced problem-solving skills, and usability issues persist, requiring balanced and responsible integration.

Overall, AI programming assistants present immense potential to augment human capabilities and reshape the

future of software development.

Keywords: AI tools, software development, code completion, bug detection, automated testing

Introduction

The integration of Artificial Intelligence (AI) into software development has transformed traditional

programming paradigms. Historically, AI's role in software development has evolved from simple

automation to sophisticated generative models capable of assisting in complex coding tasks. AI has

become a significant part of our daily lives. From virtual assistants like Siri and Alexa to

recommendation systems on Netflix and Amazon, AI is everywhere. One of the areas where AI is

making a substantial impact is in the field of programming. The emergence of Large Language Models

(LLMs) has significantly influenced computer science education, enhancing learning and curriculum

development (Raihan et al., 2024)

The integration of AI in programming has transformed the landscape of software development.

Recent advancements in conversational AI have enabled these tools to engage with developers in a

e-ISBN : 978-629-98755-5-0 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 24 – Mac - 2025

2

more interactive manner, thereby facilitating a collaborative coding environment. A study involving 42

software engineers demonstrated that conversational AI significantly improved code generation and

overall software development tasks, with participants expressing newfound appreciation for the

assistant's capabilities and productivity potential (Ross et al., 2023). AI tools are now being used to

assist programmers in writing code, making the process faster, more efficient, and less prone to errors.

AI Tools in Software Development

This article explores the transformative impact of AI tools on various aspects of software development,

including code completion, bug detection and fixing, code refactoring, learning and adapting, automated

testing, and natural language processing as shown in Figure 1. As the software industry continues to

evolve, AI technologies are becoming integral to enhancing productivity, improving code quality, and

streamlining development processes.

 Figure 1: Impact of AI tools in various aspects of software development.

e-ISBN : 978-629-98755-5-0 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 24 – Mac - 2025

3

Code Completion

One of the most common ways AI aids in programming is through code completion tools. These tools

use machine learning algorithms to predict what the programmer is going to type next. For example,

GitHub Copilot, an AI-powered code completion tool, can suggest entire lines or blocks of code based

on the context of what the programmer is writing. Research by Mozannar et al. (2023) indicates that

tools like GitHub Copilot can potentially halve the time required to complete programming tasks.

However, the study also highlights new inefficiencies arising from the need for prompt writing and

suggestion verification, suggesting that while these tools are beneficial, they also introduce complexities

that require further exploration (Mozannar et al., 2023).

AI-driven code completion tools utilize advanced algorithms to predict and suggest code

snippets, thereby assisting programmers in writing code more efficiently. For instance, Huang et al.

(2023) introduced PCR-Chain, an AI-based system that resolves fully qualified names (FQNs) and

syntax errors in partial code, achieving an impressive accuracy of 80.5% in Java, which surpasses

traditional methods focused solely on syntax errors (Huang et al., 2023). Additionally, Ciniselli et al.

(2023) evaluated Transformer models, revealing that T5 excels in predicting masked tokens, although

accuracy diminishes with increased complexity (Ciniselli et al., 2023).

Bug Detection and Fixing

Software reliability directly impacts user satisfaction and operational efficiency. As Lai et al. (2024)

highlight, understanding the nuances of bug resolution in machine learning (ML) versus non-ML

contexts is crucial for optimizing software performance. The study indicates that different categories of

ML issues require tailored approaches for effective resolution, emphasizing the need for robust

detection mechanisms.

AI techniques, particularly those utilizing machine learning, have shown potential in

identifying bugs more efficiently than traditional methods. Jahan et al. (2024) discuss the prevalence of

duplicate bug reports, which complicate maintenance efforts. Their findings suggest that existing

detection techniques often fail to recognize textually dissimilar duplicates, underscoring the necessity

for advanced AI-driven solutions that can better capture the complexities of software issues.

Traditional debugging can be a time-consuming process, but AI-powered tools can analyse the

code and identify potential issues much faster. Tools like DeepCode and Codota use AI to scan the code

for bugs and suggest fixes. This helps programmers to ensure that their code is more reliable and less

prone to errors. Innovative systems like EBUG, as presented by Fazzini et al. (2022), demonstrate the

effectiveness of AI in enhancing the quality of bug reports. EBUG's predictive models not only expedite

report creation but also improve reproducibility, showcasing the tangible benefits of AI in streamlining

the bug resolution process.

e-ISBN : 978-629-98755-5-0 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 24 – Mac - 2025

4

Code Refactoring

Refactoring is the process of restructuring existing code without changing its external behaviour. This

process enhances maintainability, readability, and overall software quality. However, manual

refactoring can be error-prone and time-consuming, necessitating the integration of advanced tools to

streamline this process. AI can identify redundant code, suggest more efficient algorithms, and even

reformat the code to make it more readable.

Refactoring is essential for adapting software to evolving requirements and improving

performance. Pantiuchina et al. (2021) analyzed 287,813 refactoring operations across 150 open-source

projects, revealing a strong correlation between specific metrics and refactoring activities. This study

highlights the necessity of understanding developer motivations, which can inform better practices and

tool development.

The implementation of AI tools in refactoring has shown promising results in improving

software quality. AI tools have emerged as pivotal in enhancing refactoring practices. For instance,

REFBUGFINDER, an Eclipse IDE plugin, effectively detects anomalies in manual refactoring

processes. Nguyen et al. (2023) demonstrated that this tool significantly reduced manual effort and

errors, thereby improving efficiency and reliability in software refactoring. Such tools not only automate

repetitive tasks but also provide insights that guide developers in making informed decisions.

Learning and Adapting

Historically, programming tools have evolved from basic text editors to sophisticated AI-driven

environments. Early tools lacked interactivity and real-time feedback, limiting their effectiveness. AI

tools are not static; they learn and adapt over time. As programmers use these tools, they gather data on

coding patterns and preferences. This allows the AI to provide more accurate and personalized

suggestions. For instance, if a programmer frequently uses a particular coding style or library, the AI

tool will learn this and tailor its suggestions accordingly. The focus on user-centric design is crucial for

the future of AI programming tools. Developers express a need for improved interfaces that allow for

better control over AI outputs, which is essential for fostering greater adoption and satisfaction.

Current trends indicate a growing reliance on live programming techniques, which facilitate

the evaluation of AI-generated code suggestions. Ferdowsi et al. (2023) demonstrated that live

programming not only aids in validating multiple suggestions but also enhances efficiency by providing

immediate feedback. Despite these advancements, a survey by Liang et al. (2024) revealed that while

AI programming assistants can boost productivity, usability issues persist, with low acceptance rates

among developers.

e-ISBN : 978-629-98755-5-0 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 24 – Mac - 2025

5

Automated Testing

Testing is a crucial part of the software development process. Historically, software testing

has evolved from manual processes to automated frameworks, driven by the need for faster and more

reliable testing outcomes. Recent advancements in AI have further transformed this landscape, enabling

more sophisticated testing methodologies. AI can automate various testing tasks, such as unit testing,

integration testing, and performance testing. AI-powered testing tools can generate test cases, execute

them, and analyse the results.

AI-driven testing tools have emerged as essential components in modern software

development. These tools leverage various machine learning approaches, including supervised,

unsupervised, and reinforcement learning, to enhance testing accuracy and efficiency. Notably, black-

box testing has gained prominence, utilizing clustering and genetic algorithms to optimize regression

testing processes (Lima et al., 2020). AI techniques, such as machine learning and neural networks,

have been identified as pivotal in automating complex testing scenarios, thus reducing time and costs

associated with software development (Job, 2021).

The integration of AI into software testing processes marks a significant evolution in the field

of software development. As the demand for high-quality software increases, traditional testing methods

often fall short in efficiency and effectiveness. AI technologies offer innovative solutions to enhance

automation, thereby improving both the quality and speed of software testing.

Natural Language Processing

Natural Language Processing (NLP) is a branch of AI that deals with the interaction between computers

and humans using natural language. NLP can be used to create tools that understand and generate human

language. In programming, NLP can be used to create documentation, generate comments, and even

translate code from one programming language to another. This makes it easier for programmers to

understand and work with the code.

The current landscape of NLP in programming is characterized by significant advancements

in techniques and applications. A comprehensive survey by Zhu et al. (2022) highlights the evolution

of NLP4P, detailing the transition from early deductive models to contemporary competition-level

frameworks. This survey emphasizes the existing gap between natural and programming languages,

which presents both challenges and opportunities for future research (Zhu et al., 2022).

NLP applications in code generation are particularly noteworthy. Heyman et al. propose a

natural language-guided programming approach that automates code completion through natural

language descriptions. Initial experiments demonstrate the feasibility of this method, particularly in

Python and data science libraries, suggesting a promising avenue for automating code adaptation from

existing examples (Heyman et al., 2021). Furthermore, the enrichment of code completion with natural

e-ISBN : 978-629-98755-5-0 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 24 – Mac - 2025

6

language intent enhances the coding process, making it more efficient and user-friendly (Heyman et al.,

2021).

Conclusion

The primary advantages of AI programming assistants include increased efficiency, reduced barriers to

entry for novice programmers, and enhanced problem-solving capabilities. By automating routine

coding tasks, these tools allow developers to focus on more complex challenges, thereby fostering

innovation. Furthermore, responsible utilization of AI can mirror the positive impacts of previous

technological advancements, such as search engines, which democratized access to information (Bull

et al., 2023).

Despite their benefits, AI programming assistants face challenges, reduced problem-solving

skills, reduced problem-solving skills, and ethical implications surrounding code originality.

Addressing these issues requires a balanced approach that emphasizes responsible use while leveraging

AI's potential to augment human capabilities.

In conclusion, AI programming assistants represent a significant advancement in software

development, offering numerous benefits while also presenting challenges that necessitate careful

consideration. The future of programming may well depend on how effectively these tools are integrated

into the development process.

References:

Bull, C., & Kharrufa, A. (2023). Generative AI Assistants in Software Development Education: A

vision for integrating Generative AI into educational practice, not instinctively defending against
it. arXiv preprint arXiv:2303.13936.

Ciniselli, M., Cooper, N., Pascarella, L., Mastropaolo, A., Aghajani, E., Poshyvanyk, D., ... & Bavota,

G. (2021). An empirical study on the usage of transformer models for code completion. IEEE
Transactions on Software Engineering, 48(12), 4818-4837.

Fazzini, M., Moran, K., Bernal-Cardenas, C., Wendland, T., Orso, A., & Poshyvanyk, D. (2022).
Enhancing mobile app bug reporting via real-time understanding of reproduction steps. IEEE
Transactions on Software Engineering, 49(3), 1246-1272.

Ferdowsi, K., James, M. B., Polikarpova, N., & Lerner, S. (2023). Live exploration of AI-generated

programs. arXiv preprint arXiv:2306.09541.

Heyman, G., Huysegems, R., Justen, P., & Van Cutsem, T. (2021, October). Natural language-guided

programming. In Proceedings of the 2021 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (pp. 39-55).

Huang, Q., Zhu, J., Xing, Z., Jin, H., Wang, C., & Xu, X. (2023). A chain of ai-based solutions for

resolving fqns and fixing syntax errors in partial code. arXiv preprint arXiv:2306.11981.

e-ISBN : 978-629-98755-5-0 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 24 – Mac - 2025

7

Jahan, S., Shah, M. B., & Rahman, M. M. (2024). Towards Understanding the Challenges of Bug

Localization in Deep Learning Systems. arXiv preprint arXiv:2402.01021.

Job, M. A. (2021). Automating and optimizing software testing using artificial intelligence

techniques. International Journal of Advanced Computer Science and Applications, 12(5).

Lai, T. D., Simmons, A., Barnett, S., Schneider, J. G., & Vasa, R. (2024). Comparative analysis of real
issues in open-source machine learning projects. Empirical Software Engineering, 29(3), 60.

Liang, J. T., Yang, C., & Myers, B. A. (2024, February). A large-scale survey on the usability of ai

programming assistants: Successes and challenges. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering (pp. 1-13).

Lima, R., da Cruz, A. M. R., & Ribeiro, J. (2020, June). Artificial intelligence applied to software
testing: A literature review. In 2020 15th Iberian Conference on Information Systems and
Technologies (CISTI) (pp. 1-6). IEEE.

Mozannar, H., Bansal, G., Fourney, A., & Horvitz, E. (2024, May). Reading between the lines:

Modeling user behavior and costs in AI-assisted programming. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (pp. 1-16).

Nguyen-Duc, A., Cabrero-Daniel, B., Przybylek, A., Arora, C., Khanna, D., Herda, T., ... &

Abrahamsson, P. (2023). Generative Artificial Intelligence for Software Engineering--A
Research Agenda. arXiv preprint arXiv:2310.18648.

Pantiuchina, J., Lin, B., Zampetti, F., Di Penta, M., Lanza, M., & Bavota, G. (2021). Why Do

Developers Reject Refactorings in Open-Source Projects?. ACM Transactions on Software
Engineering and Methodology (TOSEM), 31(2), 1-23.

Raihan, N., Siddiq, M. L., Santos, J., & Zampieri, M. (2024). Large Language Models in Computer

Science Education: A Systematic Literature Review. arXiv preprint arXiv:2410.16349.

Ross, S. I., Martinez, F., Houde, S., Muller, M., & Weisz, J. D. (2023, March). The programmer’s

assistant: Conversational interaction with a large language model for software development. In
Proceedings of the 28th International Conference on Intelligent User Interfaces (pp. 491-514).

Zhu, Q., Luo, X., Liu, F., Gao, C., & Che, W. (2022). A Survey on Natural Language Processing for

Programming. arXiv preprint arXiv:2212.05773.

