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ABSTRACT 

The heat equation which is a significant partial differential equation depicting temperature distribution of a given 

domain at a given time is used in several engineering and scientific problems. This research rises in the context 

of the heat equation solving, based on the Finite Volume Method and the Crank-Nicolson Method with the purpose 

to enhance the numerical stability, accuracy, and computational cost reduction. The usage of maple tools to 

calculate temperature distributions through time with different step sizes is demonstrated in this research. The 

main goals include evaluating the performance of these methods in terms of accuracy and convergence, and 

assessing their capabilities in dealing with nonlinearity and heterogeneity of the material. The study then uses 

these numerical techniques to get its solutions that are then compared with those of analytical solutions. Some 

new insight called into question indicate that the Crank-Nicolson method is more accurate and stable when in 

relation to complicated shapes while the Finite Volume Method is more effective in terms of conservative quantity 

like heat over finite volumes. Such outcomes suggest the applicability of these methods in the development of heat 

transfer research, stating the ways of utilizing it in practical engineering problems regarding the disposal of 

computational time and increasing the precision of calculations. 
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Introduction  

 

The heat equation, a partial differential equation describing temperature distribution in a heat-

conducting body, is crucial in many fields such as physics, engineering, and materials science. 

Analytical solutions are often impractical for complex geometries and boundary conditions, 

necessitating numerical methods like the Finite Difference Method (FDM) and Finite Volume Method 

(FVM). This research aims to solve the heat equation using the Crank-Nicolson method within FDM 

and the FVM, comparing their accuracy and stability. FDM, particularly the Crank-Nicolson approach, 

is known for its stability and second-order accuracy, making it suitable for complex geometries 

(Mojumder, 2023). FVM, adept at handling irregular shapes, integrates over control volumes and is 

precise with minimal error (Saptaningtyas, 2018). The study focuses on identifying efficient methods 

that balance computational resources and accuracy, especially for non-linear and heterogeneous 

material properties (Xiang, 2018). Using numerical computing environments like Maple, this research 
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evaluates these methods under various step sizes and boundary conditions, aiming to determine the most 

suitable approach for solving heat equations in practical scenarios. However, limitations include 

challenges in achieving stability and accurate results with the Crank-Nicolson method and the impact 

of boundary and initial condition assumptions (Zhu, 2021). Further research may explore using different 

boundary conditions to enhance the reliability and applicability of these numerical techniques in real-

life situations. 

 

Methodology 

Finite Volume Method using Explicit Method 

Heat or thermal energy is a form of energy found in solids, liquids, and gases. Its units can be converted 

to joules or calories, with 1 cal = 4.184 J. The heat equation governs the transfer of thermal energy in 

solid and liquid phases, focusing on isolated points (Herbin, 2023).  

          

             The metal rod of length l is divided into small control volumes, were heat travels from hotter 

to cooler regions under constant conduction through insulation. 

 

The heat equation is defined as:    

       

 

where e(x,t) is thermal energy density, w is heat flow per unit area, A is area, and Δx is rod length. 

 

 

Numerical Solution of One-Dimensional Heat Equation by Crank-Nicolson Method 

We solve the one-dimensional heat equation using the Crank-Nicolson method, essential for 

homogeneous boundary-value problems with Dirichlet conditions (Islam, 2018).  

The heat equation is:  

  

with initial condition u(x,0) = f(x) and boundary conditions u(0,t) = T0, u(l,t)=T1.  

The Crank-Nicolson finite difference method is given by: 

 

 

Where  δ =  
𝑘ℎ2

 

𝛽
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Unsteady State Problem of Explicit Method 

Solve the heat equation using an explicit method: 

 

 

 

with initial condition u(x,0) = x (1 − x) and boundary conditions u(0,t) = u(1,t) = 0. 

 

Unsteady State Problem of Implicit Method 

Solve the heat equation using an implicit method: 

 

 

 

with initial condition u(x, 0) = x(2 − x) and boundary conditions u(0, t) = 

u(2, t) = 0. 

 

Results 

Finite Volume Method 

Although explicit methods require small time steps to maintain numerical stability typically governed 

by the (Courants-Friedrichs-Lewy (CFL) condition), this constraint can be managed in many practical 

applications where high temporal resolution is acceptable. 

 

   

Figure 1: The grid function of 

Finite Volume Method simulation 

with spatial step size (h) = 0.2 and 

number of spatial divisions (NX) = 

5. 

Figure 2: The grid function of 

Finite Volume Method simulation 

with spatial step size (h) = 0.1 and 

number of spatial divisions (NX) = 

10. 

Figure 3: The grid function of 

Finite Volume Method simulation 

with spatial step size (h) = 0.05 and 

number of spatial divisions (NX) = 

20. 
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Explicit Crank-Nicolson Method 

 

The highly known explicit Crank-Nicolson method is preferred widely for its simplicity both in terms 

of understanding and implementation, calculating the temperatures at the grid points depending on the 

temperature there in the previous time step, with maximum time of 0.05 seconds. 

 

  
 

Figure 4: Crank-Nicolson with 

spatial step size, h = 0.2 and 

number of spatial divisions, NX = 5 

Figure 5: Crank-Nicolson with 

spatial step size, h = 0.1 and 

number of spatial divisions, NX = 

10 

Figure 6: Crank-Nicolson with 

spatial step size, h = 0.05 and 

number of spatial divisions, NX = 

20 

 
 

Discussion 

The finite volume method is often solved using the explicit method due to its straightforward 

implementation, involving simple algebraic updates at each time step (Stabile, 2018). Despite requiring 

small time steps to maintain numerical stability governed by the Courant-Friedrichs-Lewy (CFL) 

condition, this constraint can be managed in many practical applications where high temporal resolution 

is acceptable. Figures 1 to 3 illustrate the grid functions of finite volume method simulations with spatial 

step sizes (h) of 0.2, 0.1, and 0.05, respectively (Barth, 2018). As the spatial step size decreases, the 

temperature distribution becomes more accurate, capturing finer details and reducing numerical errors. 

However, increased precision also leads to higher computational demands. 

 

The Crank-Nicolson method, known for its second-order accuracy in both space and time, can 

be used explicitly or implicitly. Figures 4 to 6 show explicit Crank-Nicolson simulations with spatial 

step sizes of 0.2, 0.1, and 0.05. The smallest step size (h = 0.05) provides the highest accuracy for the 

heat equation solution, though at a higher computational cost (Du, 2018). The implicit Crank-Nicolson 

method is preferred for its stability over longer time periods, as shown in Figures 10 to 12 for a 
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maximum time of 0.05 seconds. The implicit method with a spatial step size of 0.05 is the most accurate, 

capturing finer fluctuations in temperature distribution. 

 

Conclusion 

The study achieved its objectives by solving the heat equation using numerical methods and 

compare the most suitable method between the Finite Volume Method (FVM) and the Crank-Nicolson 

method. Through extensive tests and simulations, it was found that the implicit Crank-Nicolson method 

provided more stability and better results over long intervals compared to FVM. The results showed 

that while the Crank-Nicolson method enhances accuracy and stability in thermal modelling, FVM 

produced unstable results over longer intervals. Consequently, the research concluded that the Crank-

Nicolson method is superior for detailed thermal analysis and long-term simulations. To achieve more 

accurate and stable solutions for the heat equation, using mixed (Robin) boundary conditions is 

recommended for better modelling of heat interactions at boundaries compared to Dirichlet and 

Neumann conditions (Bollati, 2018). Additionally, employing standard finite difference methods, 

including forward, backward, central, and fourth-order schemes, ensures higher accuracy and stability, 

especially for nonuniform gradients and spatial variations. Implementing adaptive mesh refinement 

(AMR) locally refines the mesh in areas with high temperature gradients, enhancing solution accuracy 

and stability without significantly increasing computational costs (Dunning, 2020). 

 

 

References:  

 

Barth, T. a. (2018). Finite volume methods: foundation and analysis. Encyclopedia of computational 

mechanics second edition, 1-60. 

Bollati, J. a. (2018). One-Phase Stefan-Like Problems with Latent Heat Depending on the Position and 

Velocity of the Free Boundary and with Neumann or Robin Boundary Conditions at the Fixed 

Face. Mathematical Problems in Engineering, 2018(1), 4960391. 

Du, B. a. (2018). Partial differential equation modeling with Dirichlet boundary conditions on social 

networks. Boundary Value Problems, 2018(1), 1-11. 

Dunning, D. a. (2020). Adaptive mesh refinement in the fast lane. Journal of Computational Physics, 

406, 1-14. 

Herbin, R. a.-C. (2023). A consistent quasi--second-order staggered scheme for the two-dimensional 

shallow water equations. IMA Journal of Numerical Analysis, 43(1), 99-143. 

Islam, M. A. (2018). Numerical solution of one-dimensional heat equation by Crank Nicolson method. 

Int. Conf. on Mechanical, Industrial and Energy Engineering, 1-4. 



e-ISBN : 978-629-98755-2-9                                                                                                  SIG : e-Learning@CS 

https://appspenang.uitm.edu.my/sigcs/    

Publication Date : 18 – Sep - 2024 

 

 

 

85 

 

Mojumder, M. S. (2023). Efficient Finite Difference Methods for the Numerical Analysis of One-

Dimensional Heat Equation. Journal of Applied Mathematics and Physics, 11(10), 3099--3123. 

Saptaningtyas, F. a. (2018). Finite volume method with explicit scheme technique for solving heat 

equation. Journal of Physics: Conference Series, 1097(1), 1-11. 

Stabile, G. a. (2018). Finite volume POD-Galerkin stabilised reduced order methods for the 

parametrised incompressible Navier--Stokes equations. Computers \& Fluids, 173, 273-284. 

Xiang, F. a. (2018). Digital twins technolgy and its data fusion in iron and steel product life cycle. IEEE 

Xplore, 1-5. 

Zhu, Q. a. (2021). Heat conduction: Mathematical modeling and experimental data. J. Emerg. Investig, 

4, 1-4. 

 


