
e-ISBN : 978-629-98755-2-9 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date: 18 – Sep - 2024

7

SEMANTIC MODEL OF PARAMETERS PASSING IN IMPERATIVE

PARADIGM WITH PROCEDURAL PROGRAMMING USING C

*Jamal Othman1, Syarifah Adilah Mohamed Yusoff2

*jamalothman@uitm.edu.my1, syarifah.adilah@uitm.edu.my2

1,2Jabatan Sains Komputer & Matematik (JSKM),

Universiti Teknologi MARA Cawangan Pulau Pinang, Malaysia

*Corresponding author

ABSTRACT

Programming language can be classified as imperative, object-oriented, functional, logic and scripting

programming paradigms. Imperative is based on commands that update the variables which exist on the computer

memory. Imperative requires functions for every step to solve a problem. Imperative specifies on how the problem

is to be solved, which requires a detailed step-by-step instruction. Procedural programming is the derivative of

the imperative paradigm which adds functions which are also known as subroutines or procedures. Procedural

programming encourages the programmer to subdivide the codes into specific tasks as a function to improve the

modularity of the program or looks structured. C programming provides different types of semantic models in

terms of parameter passing to the subroutine from the main program or vice versa. The parameters could be

variables with primitive data type, arrays or pointers. The type of parameters passing can be characterized into

three semantic models such as the in mode, out mode and in-out mode. The semantic models are predetermined

through the implementation model either the parameters are passed as pass by value, by pointer or reference, by

value-result, by result or by array.

Keywords: imperative, procedural, in mode, out mode, in-out mode

Introduction

Imperative paradigm is the oldest programming approach. The origin of the imperative paradigm is the

machine language and assembly language. Imperative programming closest to the actual mechanical

behavior of a computer. Imperative program related to sequence of instructions that change the memory

state until it achieves the desired end state (Jes´us & Pablo, 2022). The imperative paradigm is useful

for small scale applications, but cumbersome for big scale projects and parallel programming. Most of

the imperative programming paradigm such as C programming language provides the control structure

IF for branch execution and FOR or WHILE for loop execution. GOTO command is also provided for

jumping between line executions. Procedural programming is the improvised version of the imperative

paradigm which means the execution of the codes have to go through the entire code without skipping

any commands. This can be concluded that the GOTO command is not allowed in procedural

programming (Bartoníček, 2014). Examples of imperative programming languages are C, FORTRAN,

ALGOL and COBOL.

e-ISBN : 978-629-98755-2-9 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date: 18 – Sep - 2024

8

 The major strength of the imperative paradigm is its resemblance to the native language of the

computer, which makes it efficient to translate and execute the high-level programming language into

the imperative paradigm. Procedural programming decreases the expenses of program development as

well the system maintenance. Procedural programming reduces duplication of codes or code

redundancies. Code duplication is when the program fragment has a similar function in another part of

the program fragment. Code duplication complicates the program maintenance or modification since

we need to perform similar changes to all duplicated program fragments. Developers are encouraged to

reuse the similar code fragment or segment by applying the subroutines or functions (Avacheva &

Prutzkow, 2020). Subroutine reduces the length of the codes, increases the system efficiency, cuts the

cost of system maintenance, provides modularity and divides the codes into abstraction level (Djikstra,

1968). This article will elaborate three (3) types of parameters passing semantic models either the

parameter is passed as in, out or in-out mode.

Parameter Passing Semantic Models

Semantic models of parameter passing in C programming can be classified as in, out and in-out mode.

Generally, the in and in-out mode semantic models are applied among practitioners. The following is

an example of an in mode parameter passing model in C programming.

#include <stdio.h>

void calculateSUM(int,int);//prototype function

int main()

{

int x, y;

printf("\n Enter first number : ");

scanf("%d", &x);

printf("\n Enter second number : ");

scanf("%d", &y);

calculateSUM(x,y);//calling function

return 0;

}

void calculateSUM(int a, int b) //definition function

{

int sum = a + b;

printf("\n The summation of %d and %d is %d ", a, b, sum);

return;

}

Figure 1: C Program with the in-mode parameter passing

 The above figure 1, shows that the main program sends two (2) parameters x and y to the

function named calculateSUM as pass by value. The function calculateSUM(…) receives x and

y from the main program and passes over to a and b respectively at the function header. Both values

of a and b will be used for arithmetic operations for summation. The result of summation is displayed

e-ISBN : 978-629-98755-2-9 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date: 18 – Sep - 2024

9

and settled in the function. None of the updated values will be sent back to the main program. It shows

that the values are sent to the function from the main program and none of the results will be sent back

to the main program. This type of parameter passing is also called pass by value. The following diagram

named structured chart shows the parameter passing flows between the main program and the

subroutine or function.

 x, y

Figure 2: Structured chart that shows the parameter passing flows,

in mode semantic model

 The second type of parameters passing the semantic model is the in-out mode as shown in the

following figure 3.

#include <stdio.h>

void swap(int*,int*);//prototype function

int main()

{

 int x = 5, y = 10;

 printf ("\n The original value of X is %d ",x);

 printf ("\n The original value of Y is %d ",y);

 swap(&x,&y); //calling function

 printf ("\n The value of X after swap is %d ",x);

 printf ("\n The value of Y after swap is %d ",y);

 return 0;

}

void swap(int* a, int* b) //definition function

{

 int temp;

 temp = *a;

 *a = *b;

 *b = temp;

 return;

}

Figure 3: C Program with in-out mode parameter passing

Main program
input: x, y

calculateSUM(…)
received by: a, b

process: sum = a + b
output: sum

e-ISBN : 978-629-98755-2-9 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date: 18 – Sep - 2024

10

 The main function sends two parameters of computer memory address &x and &y to the

swap(…) function. The two addresses of &x and &y will be received by the pointer variables a and b

respectively in the swap(…) function header. These two addresses are actually pointed by the pointer

variables a and b indirectly to address &x and &y respectively. Next, the pointer variable a which holds

the address of &x will be pointing to variable temp as temporary. Then, the pointer variable b is

assigned to pointer variable a which means the pointer variable a is now pointing to the address of b.

Later, the variable temp is assigned to pointer variable b, which means the pointer variable b is now

pointing to the address of a. Finally, the updated address pointed by variable a and b will be returned

back to the main program and received by x and y with the latest address in the main function. This

type of parameter passing is also called pass by value-result. C++ programming language does not

provide a sending parameter with the pointer variable as applied in the C programming language

(Othman, 2010). Nevertheless, C++ provides the pass by value-result or in-out mode parameter passing

semantic model through pass by reference in which none of the pointer variables are involved in the

codes. The following figure 4, shows the logical state diagram for the program as shown in figure 3.

//int x = 5, y = 10;

 x FE09A y FE07C

Variable x holds the value 5 and is located at the address FE09A.

Variable y holds the value 10 and is located at the address FE07C.

//swap (%a, &y);

Main program sends FE09A and FE07C to swap(…) function through its parameters.

//void swap(int* a, int* b)

 *a *b

The pointer variable a is pointing to the address of x and the pointer variable b is pointing

to the address of y.

5 10

FE09A FE07C

e-ISBN : 978-629-98755-2-9 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date: 18 – Sep - 2024

11

// temp = *a;

 *a

 temp

The variable temp has the same similar value of address as pointed by the pointer variable a.

//*a = *b;

 *b *a

The pointer variables a and b are pointing to the same address.

//*b = temp;

 *b *a

 temp

Now, the final state is the pointer variable b is pointing to the address held by the variable temp

and the pointer variable a is pointing to the address as previously pointed by the pointer variable

b.

Later, when the formal parameters at the header returns the result, it will be returning the

exchanged address to the main program.

The main program will be receiving address FE07C by the variable x and the address FE09A by

the variable y. At the location FE07C, the memory address holds the value 10 and FE09A holds

the value 5, which now both variables received the exchanged numbers.

The following is the final memory state of the value held by variable x and y.

 y FE09A x FE07C

Variable x holds the value 10 and is located at the address FE07C.

Variable y holds the value 5 and located at the address FE09A.

Figure 4: Logical state diagram of in-out mode parameter passing semantic model

FE09A

FE07C

FE07C FE09A

5 10

e-ISBN : 978-629-98755-2-9 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date: 18 – Sep - 2024

12

 The third type of the parameter passing semantic model in imperative programming paradigm

using C is the out mode as shown in the following figure 5.

#include <stdio.h>

int input();//prototype function

int main()

{

 int number = input();//calling function

 printf("\n The number entered in the function is %d",number);

 return 0;

}

int input()//definition function

{

 int x;

 printf("\n Enter a number : ");

 scanf("%d",&x);

 return x;

}

Figure 5: C Program with the out-mode parameter passing

 The above code as shown in figure 5 illustrates that the input is performed in the function. None

of the values are passed from the main program to the subroutine. Once the value is entered in the

function, it will be returned to the main program and assigned to a variable for further actions. The out

mode parameter passing is also called as pass by result. The following figure 6 shows the structured

chart of the parameter passing flows from the subroutine to the main program.

 x

Figure 6: Structured chart that shows the parameter passing flows,

out mode semantic model

 The three types of parameters passing semantics model as discussed before are the pass by

value (in mode), pass by value-result (in-out mode) and pass by result (out mode). The next type of

parameter passing is sending the arrays. This type of parameter passing will pass the arrays to the

Main program
receive a value through input() and assign to number

display number

input(…)
input : x
return: x

e-ISBN : 978-629-98755-2-9 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date: 18 – Sep - 2024

13

function, and the affected subscript of an array will be updated and the result will be returned to the

main program. The following figure 7 shows the implementation of passing the array as parameter.

#include <stdio.h>

void process(int a[], const int S) //definition function

{

 for (int i=0;i<S;i++)

 {

 a[i]= a[i] * 2;

 }

 return;

}

int main()

{

 const int SIZE = 5;

 int x[5]={1,2,3,4,5};

 printf("\n Array contents before processing ");

 for (int i=0;i<SIZE;i++)

 { printf("%d ",x[i]); }

 process(x,SIZE); //calling function

 printf("\n Array contents after processing ");

 for (int i=0;i<SIZE;i++)

 { printf("%d ",x[i]); }

}

Figure 7: C Program with array parameter passing

 The contents of array variable x before it is sent to the function are {1,2,3,4,5}. The

function process(…) receives the array and multiplies each of the array subscripts by 2 and results

{2,4,6,8,10}. The output as shown below, depicts that the original contents can be changed if the

parameter sent is an array type. Sending an array as part of the parameter to the function is categorized

as pass by value-result and the semantic model is the in-out mode.

Figure 8: Comparison of array contents, before and after processing

e-ISBN : 978-629-98755-2-9 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date: 18 – Sep - 2024

14

Conclusively, the parameter passing types and its semantic model can be summarized as shown

in the following table.

Table 1: Parameter passing type and semantic model

Parameter Passing Type Semantic Model

Pass by value In mode

Pass by value-result In-out mode

Pass by Pointer or Reference In-out mode

Pass by result Out mode

Pass array In-out mode

Conclusion

In programming, parameter passing plays a crucial role in passing data between different parts of a

program, such as functions or subroutines. The method of passing parameters can significantly impact

the efficiency and behavior of a program. By understanding the different methods of parameter passing

- including pass-by-value, pass-by-reference and pass-by-pointer, the developers can make informed

decisions about which approach to use based on factors such as performance requirements, memory

management, and the desired behavior of the program. Each method has its advantages and limitations.

Ultimately, the choice of parameter passing method depends on the specific requirements of the

program and the trade-offs between performance, memory usage, and data integrity. By carefully

considering these factors, developers can design robust and efficient software systems.

References:

Avacheva, T., & Prutzkow, A. (2020), The Evolution of Imperative Programming Paradigms as a

Search for New Ways to Reduce Code Duplication, IOP Conference Series Materials Science

and Engineering, DOI: https://iopscience.iop.org/article/10.1088/1757-899X/714/1/01200

Bartoníček, Jan. (2014), Programming Language Paradigms & The Main Principles of Object-

Oriented Programming, CRIS - Bulletin of the Centre for Research and Interdisciplinary

Study, http://dx.doi.org/10.2478/cris-2014-0006

Jes´us, F., & Pablo, G. (2022), Programming Paradigms: Lectures on High-performance Computing for

Economists VII, University Pennsylvania, Retrieved May 8, 2024, from

https://www.sas.upenn.edu/~jesusfv/Lecture_HPC_7_Programming_Paradigms.pdf

Djikstra, E. W. (1968), The Structure of the ‘THE’ – Multiprogramming System, Communications of

the ACM, vol. 11, number 5, pp. 341-346.

Othman, J. (2010), Fundamentals Of Programming: With Examples in C, C++ and Java, 1st edition,

Pusat Penerbitan Universiti (UPENA), UiTM Malaysia, ISBN: 978-967-363-110-0.

https://iopscience.iop.org/article/10.1088/1757-899X/714/1/01200
http://dx.doi.org/10.2478/cris-2014-0006
https://www.sas.upenn.edu/~jesusfv/Lecture_HPC_7_Programming_Paradigms.pdf

