
e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

16

FUNCTIONAL PROGRAMMING PARADIGM WITH

SCHEME PROGRAMMING LANGUAGE

*Jamal Othman1

*jamalothman@uitm.edu.my1

1Jabatan Sains Komputer & Matematik (JSKM),

Universiti Teknologi MARA Cawangan Pulau Pinang, Malaysia

*Corresponding author

ABSTRACT

Functional programming (FP) is a paradigm which the expression is written in declarative style or bind the

expression as mathematical function. FP treats functions as data. Basically, this paradigm was introduced for

mathematical computation. Anything that can be computed by the FP than it is considered as computable.

Currently, this paradigm has been introduced as an elective or optional course to the students at the tertiary level

of education. Other than FP paradigms, the students are also introduced with the structured, object-oriented,

logic and scripting paradigms. The main purpose of introducing varieties of programming paradigms is to make

sure that the students are able to choose appropriate programming language related to their project scopes and

domain. The FP paradigms focus on what is the expected result the program should produce rather than on how

the result will be get as applied in structured and object-oriented programming paradigms. This article will

discuss details on the characteristics, example of codes which uses the Scheme programming language and

implementation of the FP paradigms in the real life.

Keywords: functional programming (FP), paradigms, scheme, lambda calculus

Introduction

Functional programming (FP) is based on lambda calculus which was developed by Alonzo Church in

1930s, for studying computations with functions (Bhadwal, 2022). The coding in FP is a declarative

type that is focusing on what to solve instead of on how to solve. The function is the main element in

the FP, similarly as object becomes the main tools in the object-oriented programming (Vishal, 2022).

Examples of programming languages that support the FP paradigms are Haskell, JavaScript, Python,

Scala, Erlang, Lisp, ML, Clojure, OCaml, Common Lisp, Scheme and Racket.

 One of the uniqueness of FP is the implementation of recursive functions to avoid the common

repetition control structures such as the for loop, while or the do..while loops as implemented in

imperative programming paradigms. FP applies the immutable data approach which the data state

cannot be modified or changed after it is created. The traditional approach of programming paradigm

such imperative or structured programming applied the mutable data approach which the code will

overwrites the old data whenever the new data is available. FP paradigm supports the parallel

programming and concurrency for multilayer computations (Khanfor & Yang, 2017). Moreover, FP

diverges from the practice of relying on the sequence of codes for application execution, a characteristic

seen in imperative or object-oriented programming paradigms (Parewa, 2022).

e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

17

Characteristics of Functional Programming (FP)

FP consists of predefined or user-defined functions. Each function will be defined according to the

given expression. Expressions will be formed to construct a special function which consists of other

functions as substitution function, variables and constant values. Every expression should be

represented by certain values and the computation will be done to determine the results (Chitil, n.d.).

Computation in FP using the Cambridge Prefix notation as shown in table 1 below.

Table 1: Computation of expression in imperative vs FP

Imperative paradigm

 (Infix expression)

Functional paradigm

 (Prefix notation)

5 + 4 + 4 + 3 + 5 4 4 3

5 – 4 + 3 + - 5 4 3

(9 + 4) * (5 - 2) (* (+ 9 4) (- 5 2))

FP has a special feature which allow the user to delay the processing or computation. This

feature is called as lazy evaluation. Lazy evaluation is defined as the expressions will be evaluated

whenever it is actually needed or required only (GNU, n.d.). The following table 2 shows the difference

of eager evaluation and lazy evaluation as applied in functional paradigm by using the Scheme

programming language.

Table 2: comparison of eager and lazy evaluation

(Eager evaluation) (Lazy evaluation)

(define (eager x y)(+ (expt x 2) (expt y 2)))

> (eager 6 8)

100

; the expressions will be evaluated immediately

whenever the value is given.

(define (lazy x y) (delay (+ (expt x 2)(expt y 2))))

> (lazy 7 8)

#<promise:lazy> ; no result shown here

> (force (lazy 7 8))

113 ; the result shown here after forced

; the command ‘delay’ delayed the expressions

evaluation. It will be processed whenever it is needed

by using the command ‘force’ for immediate

computation.

FP is actually based on the lambda calculus which in turn provides a framework for studying

decidability questions of programming (Aaby, 1998). The function can be created using the Scheme

programming language either by implementing or not implementing the keyword ‘lambda’. The

following table 3 shows the definition of Pythagorean Theorem.

e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

18

Table 3: Pythagorean Theorem with Lambda or without Lambda command

Without Lambda With Lambda

(define (pythagorean a b)

 (sqrt (+ (expt a 2) (expt b 2))))

(display " Enter the value of a ")

(define a(read))

(display " Enter the value of b ")

(define b(read))

(define result(pythagorean a b))

(display " The result is ")

(newline)

(display result)

Output:

Enter the value of a 6

Enter the value of b 8

The result is

10

(define pythagorean (lambda(a b)

 (sqrt (+ (expt a 2) (expt b 2)))))

(display " Enter the value of a ")

(define a(read))

(display " Enter the value of b ")

(define b(read))

(define result(pythagorean a b))

(display " The result is ")

(newline)

(display result)

Output:

Enter the value of a 6

Enter the value of b 8

The result is

10

The name of the function is pythagorean

and sends two parameters, a and b.

The name of the function is pythagorean and the

lambda function sends two parameters, a and b.

 FP allows us to store multiple data or arguments in a list (Othman et. al, 2019). Additionally,

the commands cons can be used to construct pairs and pairs are used to construct lists. The car and

cdr commands enable us to retrieve the first element or argument from the list and extract the

remainder arguments except the first argument of the list respectively. Figure 1 shows the

implementation of the commands list, cons, car and cdr in Scheme programming language.

e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

19

(list '(ali abu ibrahim jusoh aminah raju kamilia))

> ((ali abu ibrahim jusoh aminah raju kamilia)) ; → list contents

(cons '(ali abu) '(ibrahim jusoh aminah raju kamilia))

> ((ali abu) ibrahim jusoh aminah raju kamilia) ; → contents in the list by using the cons command

(car '(ali abu ibrahim jusoh aminah raju))

> Ali ; → the first element from the list

(cdr '(ali abu ibrahim jusoh aminah raju))

> (abu ibrahim jusoh aminah raju); → the remainder elements from the list except the first element

> (define flower '(rose tulip carnation chrysanthemum orchid))

> flower

(rose tulip carnation chrysanthemum orchid) ; → flower is a list which consist name of flowers

> (car flower)

rose; → first element of the flower lists.

> (cdr flower)

(tulip carnation chrysanthemum orchid); → the remainder elements of the flower lists

Figure 1: implementation of list, cons, car & cdr commands in Scheme programming language

Similar to other type of programming paradigms, the FP is also providing the selection control

structures such as the cond or case for multiple conditions and if for single or dual conditions

(Othman et. al, 2019). The following table 4 shows the implementation of selection control structures

in Scheme programming language as compared to imperative paradigm and the output as shows in table

5.

e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

20

Table 4: Implementation of selection control structures in FP as compared to Imperative paradigm.

Imperative Paradigms with C Functional Paradigms with Scheme

#include <stdio.h>

float rateFunct(char);

float bonusFunct(float);

int main()

{

 char workertype;

 float rateperday, totalsalary, bonus, totalall;

 int numberofworkingdays;

 printf("\n Payroll System ");

 printf("\n Worker Type ");

 printf("\n A. Senior Manager ");

 printf("\n B. Manager ");

 printf("\n C. Supervisor ");

 printf("\n D. Production line worker ");

 printf("\n ? ");

 scanf(" %c", &workertype);

 printf("\n Number of working days : ");

 scanf("%d",&numberofworkingdays);

 rateperday = rateFunct(workertype);

 totalsalary = rateperday * numberofworkingdays;

 totalall = totalsalary + bonusFunct(totalsalary);

 printf("\n Salary RM %.2f ",totalsalary);

 printf("\n Bonus RM %.2f ",
 bonusFunct(totalsalary);

 printf("\n Salary+Bonus RM %.2f ",totalall);

 printf("\n Thank you ");

 return 0;

}

float rateFunct(char workertype)

{ float rateperday;

if (workertype == 'A' or workertype == 'a')

 rateperday = 200;

 else if (workertype == 'B' or workertype == 'b')

 rateperday = 150;

 else if (workertype == 'C' or workertype == 'c')

 rateperday = 100;

 else if (workertype == 'D' or workertype == 'd')

 rateperday = 75;

 else

 rateperday = 0;

return rateperday;

}

float bonusFunct(float totalsalary)

{ float bonus;

 if (totalsalary > 3000)

 bonus = 300;

 else

 bonus = 150;

 return bonus;

}

#lang scheme

(define (get-rate)

 (display "Payroll System")

 (newline)

 (display "Worker type ")

 (newline)

 (display "A. Senior Manager ")

 (newline)

 (display "B. Manager ")

 (newline)

 (display "C. Supervisor ")

 (newline)

 (display "D. Production line worker ")

 (newline)

 (display "?")

 (let ((code (read)))

 (newline)

 (cond

 ((or (eq? code 'A)(eq? code 'a)) 200)

 ((or(eq? code 'B)(eq? code 'b)) 150)

 ((or(eq? code 'C)(eq? code 'c)) 100)

 ((or(eq? code 'D)(eq? code 'd)) 75)

 (else 0))))

; another option to apply the case control structure

 ; as shown below

(case code

 ((A a) 200)

 ((B b) 150)

 ((C c) 100)

 ((D d) 75)

 (else 0))))

(define (get-workingdays)

 (display "Number of working days :")

 (read))

(define (main)

 (let* ((rate (get-rate))

 (numberofworkingdays(get-workingdays))

 (tot-salary (* rate numberofworkingdays))

 (bonus (if (>= tot-salary 3000) 300 150))

 (tot-all (+ tot-salary bonus)))

 (display "Salary RM ")

 (display tot-salary)

 (newline)

 (display "Bonus, RM ")

 (display bonus)

 (newline)

 (display "Salary+Bonus, RM ")

 (display tot-all)

 (newline)

 (display "Thank you")

))

(main)

e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

21

Table 5: The output of selection control structures in FP as compared to Imperative paradigm.

Imperative Paradigms with C Functional Paradigms with Scheme

Output :

 Payroll System

 Worker Type

 A. Senior Manager

 B. Manager

 C. Supervisor

 D. Production line worker

 ? A

 Number of working days: 30

 Salary RM 6000

 Bonus RM 300

 Salary+Bonus, RM 6300

 Thank you

Output :

Payroll System

Worker type

A. Senior Manager

B. Manager

C. Supervisor

D. Production line worker

? A

Number of working days: 30

Salary RM 6000

Bonus, RM 300

Salary+Bonus, RM 6300

Thank you

Functional paradigms in Scheme programming language provides a predicate type which it is

a built-in procedure that always returns the boolean value (#t or #f) (Racket, n.d.). The following

table 6 shows the lists of built-in procedures with predicate type in Scheme programming language.

Table 6: List of Built-in Procedures with Predicate type in Scheme Programming Language

Predicate Type Function or purposes Example

> (procedure? f1) To examine the existence

of the function name

> (define add (lambda (x y) (+ x y)))

> (procedure? add)

#t

> (null? mylist) To examine the list is

empty or not empty

> (define mylist '(a b c d e))

> (null? mylist)

#f

> (define nextlist '())

> (null? nextlist)

#t

> odd?

> even?

To determine either the

number is even or odd

number

> (define x 10)

> (even? x)

#t

> boolean? To determine either the

expression is true or false

> (boolean? (> 9 3))

> #t

> negative?

> positive?

To determine the

expressions or value is a

negative of positive value

> (positive? (- 10 -12))

#t

> eq? To determine the value is

similar with the value

assign to another identifier

> (define option1 'A)

> (define option2 'a)

> (define option3 'A)

> (eq? option1 option2)

#f

> (eq? option1 option3)

#t

*only the most frequently used of built-in predicate are listed here

e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

22

Scheme has no expressions designed for looping. The only easy way to do this is recursion, that

is, designing a procedure such that it meets 2 criteria which the procedure must have a base case that it

stops at and the recursive function. Recursive is a function or procedure that calls itself. In Scheme

programming language, simple code of iteration can be achieved through recursion by having a function

that call itself. Most programs are tail recursive, where the recursive function calls the last action that

occurs. In other words, there is no need to return for further execution of the n-th iteration of the function

after the recursive function calls the (i+1) iteration (Southwestern University, n.d). The following table

7 shows the implementation of recursive function in C and Scheme programming language for

Fibonacci problems.

Table 7: Recursive function in C and Scheme Programming language

Imperative paradigm (C programming) Functional paradigm (Scheme Programming)

#include <stdio.h>

int fibonacci(int);

int main()

{

 int number, result;

 printf("\n Enter a number : ");

 scanf("%d", &number);

 result = fibonacci(number);

 printf("\n The fibonacci number for

 %d is %d ", number, result);

 return 0;

}

int fibonacci(int x)

{

 if (x == 0)

 return 0;

 else if (x == 1)

 return 1;

 else

 return (x + fibonacci(x-1));

}

Output :

Enter a number : 5

The fibonacci number for 5 is 15

#lang scheme

(define fibonacci (lambda (x)

 (cond ((eq? x 0) 0)

 ((eq? x 1) 1)

 (else (+ x (fibonacci (- x 1))))

)

)

)

(display "Enter a number : ")

(define x(read))

(newline)

(define fibo(fibonacci x))

(display "The fibonacci number for ")

(display x)

(display " is ")

(display fibo)

Output :

Enter a number : 10

The fibonacci number for 10 is 55

e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

23

Functional Programming (FP) Applications

Quite rare actually we heard or found the commercial application systems which implements the FP

paradigms. FP is not the most common paradigm, and most developers are not intimately familiar with

its features and syntaxes. Another main reason is the use of recursion structure instead of ordinary loops

in the making of the application makes most of the developers are refused to use the FP paradigm.

Parallelism processing is the most demanding field which are now increasingly applied in industrial and

commercial area. The strength of parallelism tools to solve the concurrency issues in FP, has developed

the consciousness and confidence among developers to use FP paradigm.

Nowadays, FP applications appear in diverse fields such as complex networking switches, event

correlation managers, expert contract valuators, integrated circuit designers, theorem provers & model

checkers, natural language processors and robotics and manufacturing (ByteScout, n.d.). First FP

success story begins when one of the largest global manufacturers of telecommunications equipment,

Ericsson which operates in more than 100 countries and 80,000 employees, uses the Erlang FP language

in a variety of telecommunications and networking devices. Applications developed for this equipment

prove highly reliable with only a few seconds of downtime over the course for many years. The second

FP application is the chip design assistant. Bluespec is a commercial company has claimed that the

development of their chip design assistant platforms derives from the Haskell FP language. The third

example of FP application is Jane Street Capital located in US is a proprietary trading firm involved in

financial markets around the world used the FP paradigm to develop sophisticated statistical research

operating over terabytes of data as well as real-time systems that demand performance (Wadler, n.d.).

Conclusion

In conclusion, FP is a paradigm that treats computation as the evaluation of mathematical

functions and avoids changing-state and mutable data. It emphasizes immutability, lazy evaluation, and

the use of higher-order functions. FP languages, such as Haskell, Lisp, and Scheme, have increased

popularity for their ability to improve source code simplicity, modularity, and maintainability.

Moreover, functional programming aligns well with modern trends in software development, such as

the rise of distributed systems and the increasing importance of parallel processing in a world of multi-

core processors. As the industry continues to evolve, functional programming concepts are likely to

become even more relevant, influencing not only specialized functional languages but also mainstream

languages that adopt functional features. Ultimately, the adoption of functional programming is a matter

of choosing the right tool for the task at hand. It may not be suitable for every project, but incorporating

functional programming principles into one's coding practices can lead to more robust, modular, and

maintainable software systems.

e-ISBN : 978-629-98755-1-2 SIG : e-Learning@CS

https://appspenang.uitm.edu.my/sigcs/

Publication Date : 5 – Apr - 2024

24

References:

Aaby, A. A. (1998, January 1). Functional Programming. Https://www.cs.jhu.edu/. Retrieved

November 12, 2023, from

https://www.cs.jhu.edu/~jason/465/readings/lambdacalc.html#:~:text=Functional%20programm

ing%20is%20based%20on%20the%20lambda%2Dcalculus%20which%20in,programs%20into

%20equivalent%20functional%20programs.Bhadwal, A. (2022, September 9). Functional

Programming Languages: Concepts & Advantages. Hackr.io. Retrieved November 10, 2023,

from https://hackr.io/blog/functional-programming

ByteScout Team of Writers (n.d.). REAL-WORLD SUCCESS STORIES IN FUNCTIONAL

PROGRAMMING. ByteScout. Retrieved November 14, 2023, from

https://bytescout.com/blog/functional-programming.html

Chitil, O. (n.d.). Functional Programming. Kent Academic Repositity. Retrieved November 11, 2023,

from https://kar.kent.ac.uk/24064/1/FuncOlaf.pdf

GNU (n.d.). 17. Lazy evaluation. T.Shido’s Home Page. Retrieved November 11, 2023, from

https://www.shido.info/lisp/scheme_lazy_e.html

Khanfor, A. & Yang, Y. (2017). An Overview of Practical Impacts of Functional Programming. 2017

24th Asia-Pacific Software Engineering Conference Workshops (APSECW), 50-54.

https://doi.org/10.1109/APSECW.2017.27

Othman, J., Ahmad, J.I., Abdul Wahab, N., Che Jan, N.Y., & Abd Wahab, Z.I. (2019), Programming

Paradigms Concepts, (First ed.), Selangor, Malaysia: Penerbit UiTM, ISBN: 978-967363590

Parewa Labs Pvt. Ltd. (2022, January 1). What is Functional Programming? A Beginner's Guide.

Programiz. Retrieved November 9, 2023, from https://programiz.pro/resources/what-is-

functional-programming/

Racket. (n.d.). Predicates. Functional Programming With Scheme Programming Language. Retrieved

November 13, 2023, from https://docs.racket-

lang.org/predicates/index.html#%28def._%28%28lib._predicates%2Fmain..rkt%29._if~3f%29

%29

Southwestern University (n.d.). Predicates. Scheme Recursion/Lambda Lab. Retrieved November 13,

2023, from

https://people.southwestern.edu/~owensb/PL/RecursionLambdaLab.htm#:~:text=Recursion%2

0is%20a%20term%20used,the%20last%20action%20that%20occurs.

Vishal (2022, June 28). Functional Programming Paradigm. GeeksForGeeks. Retrieved November 9,

2023, from https://www.geeksforgeeks.org/functional-programming-paradigm/

Wadler, P. (n.d.). Functional Programming in the Real World. Https://Homepages.inf.ed.ac.uk/.

Retrieved November 14, 2023, from https://homepages.inf.ed.ac.uk/wadler/realworld/

https://hackr.io/blog/functional-programming
https://kar.kent.ac.uk/24064/1/FuncOlaf.pdf
https://programiz.pro/resources/what-is-functional-programming/
https://programiz.pro/resources/what-is-functional-programming/
https://docs.racket-lang.org/predicates/index.html#%28def._%28%28lib._predicates%2Fmain..rkt%29._if~3f%29%29
https://docs.racket-lang.org/predicates/index.html#%28def._%28%28lib._predicates%2Fmain..rkt%29._if~3f%29%29
https://docs.racket-lang.org/predicates/index.html#%28def._%28%28lib._predicates%2Fmain..rkt%29._if~3f%29%29

